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Motivation (why care?)

* Crucial task for type |[IB phenomenology: calculate the superpotential, W.

* Witten ’96 showed us that Euclidean D3-branes contribute to W if they wrap
smooth, rigid divisors.

 But many (most?) divisors in CY3s are singular!

When do Euclidean D3-branes wrapped on

singular divisors contribute to the superpotential?

 And a teaser: the answer to this question will lead us to discover modular
superpotentials, which hint at a new strong-weak duality involving inversions of
divisor volumes.
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What can happen?

1. An Infinite tower of states becomes massless

. A finite number of states becomes massless and you end up in
the moduli space of a new Calabi-Yau, X'.

“flops”

seetalk by Fabiant | 3 A finite number of states becomes massless and you end up in
the moduli space of the same Calabi-Yau, X.

. " o B [Demirtas, McAllister, Rios-Tascon ’20;
NOte ﬂOpS are Ublqu ItIOUS! Brodie, Constantin, Lukas, Ruehle *21]
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Flops in Calabi-Yaus

Consider a divisor in X that intersects the curve [ €] that we are flopping.

What happens to this divisor as we go through the flop transition?

(6]

- [%]a—[%]'

A divisor D in X. A divisor D’ in X".

—[€]
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Symmetric Flops in Calabi-Yaus

Symmetric flop: X =~ X’

[Brodie, Constantin, Lukas '20; Brodie, Constantin, Lukas, Ruehle '21]

In such a scenario, one can identify a linear
map that maps divisors in X to divisors in X"

K(X) K(X))

—

H4(X7Z)_>H4(sz)7 QHAQ

Note: if A is of infinite order, then one can
uncover an infinite number of independent
effective divisors in this way.
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But singular divisors appear to be ubiquitous in Calabi-Yau threefolds.
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Let us consider a superpotential that is generated by an ED3 on a smooth D in X:

WX D AD e—zﬂ'TD K(X) K(X,) WX/ D AD/e—zyz'TD,

By holomorphy of the superpotential, we must have
WX — WX/
leads to a new condition for a superpotential contribution:

If a singular divisor can be flopped to a Calabi-Yau where it

Is smooth and rigid, then it contributes to the superpotential.

ING, Kim, McAllister, Moritz, Stillman ’22]
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In this phase, we find a contribution to the
superpotential from smooth, rigid divisors:

W p— AD eXp (— 2]1' TD) [Witten *96]

K(X) Now, let’s walk through each of the three walls
of K(X) and see what happens.

A 2D cross-section of the
Kahler cone of X.
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A modular superpotential

Consider type IIB string theory on a particular Calabi-Yau threefold, X, with
h'! = 3 that admits a symmetric flop induced by a linear map, A.

Analytically continuing through the infinitely many
& G symmetric flops, we get:

K(X') . ' K(X") W = AD CXP (—271' TD)
+Apexp (=27 A(Tp))
K(X)
+Apexp (—2x AX(Tp))
+Apexp (=2 A(Tp))
KX + ...

= f(T") 9,0(z(T") ; 7(T))

[c.f. Donagi, Grassi, Witten 96]
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o Singular divisors appear ubiquitous in Calabi-Yau threefolds

* We identified a sufficient condition for such singular divisors to contribute to the
superpotential

* We used this condition to identify superpotentials that can be resummed into
Jacobi theta functions

 These modular superpotentials suggest the existence of strong-weak dualities
involving the inversion of divisor volumes.



thank you!



