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Motivation (why care?)
• Crucial task for type IIB phenomenology: calculate the superpotential, W.

• Witten ’96 showed us that Euclidean D3-branes contribute to W if they wrap 
smooth, rigid divisors.

• But many (most?) divisors in CY3s are singular! 

When do Euclidean D3-branes wrapped on 

singular divisors contribute to the superpotential?

• And a teaser: the answer to this question will lead us to discover modular 
superpotentials, which hint at a new strong-weak duality involving inversions of 
divisor volumes.

[cf. Kachru, Kallosh, Linde, Trivedi’03; Balusubramanian, Berglund, Conlon, Quevedo’05,...]  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Consider type IIB string theory on a Calabi-Yau threefold, X.

Now consider shrinking and blowing up a curve class  in X such that[!]
[!] → − [!]

What can happen?

1. An infinite tower of states becomes massless

2. A finite number of states becomes massless and you end up in 
the moduli space of a new Calabi-Yau, X’.

3. A finite number of states becomes massless and you end up in 
the moduli space of the same Calabi-Yau, X.

“flops”
See talk by Fabian!

Note: flops are ubiquitious! [Demirtas, McAllister, Rios-Tascon ’20;  
Brodie, Constantin, Lukas, Ruehle ’21]
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Consider a divisor in  that intersects the curve  that we are flopping. X [!]
What happens to this divisor as we go through the flop transition?

A divisor  in .D X A divisor  in .D′ X′ 

[!]
−[!]

[!] → − [!]
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Symmetric Flops in Calabi-Yaus

K(X) K(X′ )
Symmetric flop: X ≅ X′ 

In such a scenario, one can identify a linear 
map that maps divisors in  to divisors in :X X′ 

Note: if  is of infinite order, then one can 
uncover an infinite number of independent 
effective divisors in this way.


Λ

[Brodie, Constantin, Lukas ’20; Brodie, Constantin, Lukas, Ruehle ’21]
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Superpotential contributions
Let us consider a superpotential that is generated by an ED3 on a smooth  in :D X

WX ⊃ AD e−2πTD WX′ 
⊃ AD′ 

e−2πTD′ 

By holomorphy of the superpotential, we must have
WX = WX′ 

If a singular divisor can be flopped to a Calabi-Yau where it 

is smooth and rigid, then it contributes to the superpotential.
[NG, Kim, McAllister, Moritz, Stillman ’22]

K(X) K(X′ )

leads to a new condition for a superpotential contribution:
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Now, let’s walk through each of the three walls  
of K(X) and see what happens.
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K(X′ ) K(X′ ′ )

K(X′ ′ ′ )

Analytically continuing through the infinitely many  
symmetric flops, we get:

+AD exp (−2π Λ2(TD))
+AD exp (−2π Λ3(TD))
+ …

A modular superpotential

+AD exp (−2π Λ(TD))
W = AD exp (−2π TD)

= f(Ti) ϑ10(z(Ti) ; τ(Ti))

Consider type IIB string theory on a particular Calabi-Yau threefold, , with 
 that admits a symmetric flop induced by a linear map, .

X
h1,1 = 3 Λ

[c.f. Donagi, Grassi, Witten ’96]



Conclusions



Conclusions

• Singular divisors appear ubiquitous in Calabi-Yau threefolds



Conclusions

• Singular divisors appear ubiquitous in Calabi-Yau threefolds

• We identified a sufficient condition for such singular divisors to contribute to the 
superpotential



Conclusions

• Singular divisors appear ubiquitous in Calabi-Yau threefolds

• We identified a sufficient condition for such singular divisors to contribute to the 
superpotential

• We used this condition to identify superpotentials that can be resummed into 
Jacobi theta functions



Conclusions

• Singular divisors appear ubiquitous in Calabi-Yau threefolds

• We identified a sufficient condition for such singular divisors to contribute to the 
superpotential

• We used this condition to identify superpotentials that can be resummed into 
Jacobi theta functions

• These modular superpotentials suggest the existence of strong-weak dualities 
involving the inversion of divisor volumes.



thank you!


